1、l、c元件稱為“慣性元件”,即電感中的電流、電容器兩端的電壓,都有一定的“電慣性”,不能突然變化。充放電時間,不光與l、c的容量有關,還與充/放電電路中的電阻r有關。“1uf電容它的充放電時間是多長?”,不講電阻,就不能回答。
rc電路的時間常數(shù):τ=rc
充電時,uc=u×[1-e(-t/τ)] u是電源電壓
放電時,uc=uo×e(-t/τ) uo是放電前電容上電壓
rl電路的時間常數(shù):τ=l/r
lc電路接直流,i=io[1-e(-t/τ)] io是最終穩(wěn)定電流
lc電路的短路,i=io×e(-t/τ)] io是短路前l(fā)中電流
2、設v0 為電容上的初始電壓值;
v1 為電容最終可充到或放到的電壓值;
vt 為t時刻電容上的電壓值。則:
vt=v0 +(v1-v0)× [1-e(-t/rc)]
或
t = rc × ln[(v1 - v0)/(v1 - vt)]
例如,電壓為e的電池通過r向初值為0的電容c充電,v0=0,v1=e,故充到t時刻電容上的電壓為:
vt=e × [1-e(-t/rc)]
再如,初始電壓為e的電容c通過r放電 , v0=e,v1=0,故放到t時刻電容上的電壓為:
vt=e × e(-t/rc)
又如,初值為1/3vcc的電容c通過r充電,充電終值為vcc,問充到2/3vcc需要的時間是多少?
v0=vcc/3,v1=vcc,vt=2*vcc/3,故 t=rc × ln[(1-1/3)/(1-2/3)]=rc × ln2 =0.693rc
注:ln()是e為底的對數(shù)函數(shù)
3、提供一個恒流充放電的常用公式:⊿vc=i*⊿t/c.再提供一個電容充電的常用公式:vc=e(1-e(-t/r*c))。rc電路充電公式vc=e(1-e(-t/r*c))。 關于用于延時的電容用怎么樣的電容比較好,不能一概而論,具體情況具體分析。實際電容附加有并聯(lián)絕緣電阻,串聯(lián)引線電感和引線電阻。還有更復雜的模式--引起吸附效應等等。供參考。
e是一個電壓源的幅度,通過一個開關的閉合,形成一個階躍信號并通過電阻r對電容c進行充電。e也可以是一個幅度從0v低電平變化到高電平幅度的連續(xù)脈沖信號的高電平幅度。電容兩端電壓vc隨時間的變化規(guī)律為充電公式vc=e(1-e(-t/r*c))。式中的t是時間變量,小e是自然指數(shù)項。舉例來說:當t=0時,e的0次方為1,算出vc等于0v。符合電容兩端電壓不能突變的規(guī)律。diangon.com,對于恒流充放電的常用公式:⊿vc=i*⊿t/c,其出自公式:vc=q/c=i*t/c。舉例來說:設c=1000uf,i為1a電流幅度的恒流源(即:其輸出幅度不隨輸出電壓變化)給電容充電或放電,根據(jù)公式可看出,電容電壓隨時間線性增加或減少,很多三角波或鋸齒波就是這樣產(chǎn)生的。根據(jù)所設數(shù)值與公式可以算出,電容電壓的變化速率為1v/ms。這表示可以用5ms的時間獲得5v的電容電壓變化;換句話說,已知vc變化了2v,可推算出,經(jīng)歷了2ms的時間歷程。當然在這個關系式中的c和i也都可以是變量或參考量。詳細情況可參考相關的教材看看。供參考。
4、首先設電容器極板在t時刻的電荷量為q,極板間的電壓為u.,根據(jù)回路電壓方程可得:
u-u=ir(i表示電流),
又因為u=q/c,i=dq/dt(這兒的d表示微分哦),
代入后得到:
u-q/c=r*dq/dt,
也就是rdq/(u-q/c)=dt,然后兩邊求不定積分,并利用初始條件:t=0,q=0就得到q=cu【1-e-t/(rc)】這就是電容器極板上的電荷隨時間t的變化關系函數(shù)。順便指出,電工學上常把rc稱為時間常數(shù)。
相應地,利用u=q/c,立即得到極板電壓隨時間變化的函數(shù),
u=u【1-e -t/(rc)】。從得到的公式看,只有當時間t趨向無窮大時,極板上的電荷和電壓才達到穩(wěn)定,充電才算結束。
但在實際問題中,由于1-e-t/(rc)很快趨向1,故經(jīng)過很短的一段時間后,電容器極板間電荷和電壓的變化已經(jīng)微乎其微,即使我們用靈敏度很高的電學儀器也察覺不出來q和u在微小地變化,所以這時可以認為已達到平衡,充電結束。
舉個實際例子吧,假定u=10伏,c=1皮法,r=100歐,利用我們推導的公式可以算出,經(jīng)過t=4.6*10(-10)秒后,極板電壓已經(jīng)達到了9.9伏。真可謂是風馳電掣的一剎那。